Thermodynamic Study of a Combined Power and Refrigeration System for Low-Grade Heat Energy Source

نویسندگان

چکیده

This study focuses on the thermal performance analysis of an organic Rankine cycle powered vapor compression refrigeration for a set working fluids each cycle, also known as dual fluid system. Both cycles are coupled using common shaft to maintain constant transmission ratio one. Eight have been studied and total sixty-four combinations analyzed combined The has performed achieve temperature −16 °C condenser temperatures 34 °C, 36 38 40 °C. For desired in required work input, mass flow rate, heat input were determined systematically. Based manifestation criteria, three (R123, R134a, R245fa) chosen two (Propane picked cycle. Further, combination R123 with propane was scrutinized their highest efficiency value 16.48% corresponding coefficient 2.85 at

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic analysis of three combined power and refrigeration ‎Systems based on a demand

Three combined power and refrigeration system are introduced to compare and analyze for a defined demand and same fuel consumption based on thermodynamic parameters in a 24 hours period. Gas turbine and/or steam turbine are used for power generation and also ejector refrigeration cycle is used to produce cooling. These three systems are named as GER, SER and GSER. The results of three systems a...

متن کامل

Thermodynamic Performance of a Combined Power and Ejector Refrigeration Cycle

In this study thermodynamic performance analysis of a combined organic Rankine cycle and ejector refrigeration cycle is carried out for use of low-grade heat source in the form of sensible energy. Special attention is paid to the effects of system parameters including the turbine inlet temperature and turbine inlet pressure on the characteristics of the system such as ratios of mass flow rate, ...

متن کامل

Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency.

We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to elect...

متن کامل

Designing an Optimal System of Combined Heat, Cold and Power for a Building

In this study, supply electrical, heating and cooling loads in the building by a separate production system and a cogeneration system, particle swarm optimization algorithm in five different scenarios were studied and analyzed (For example, Data and Information a high-rise building base 72, in the city of Kerman is used). The results show that, cold and heat power system of micro gas turbine wi...

متن کامل

a study on thermodynamic models for simulation of 1,3 butadiene purification columns

attempts have been made to study the thermodynamic behavior of 1,3 butadiene purification columns with the aim of retrofitting those columns to more energy efficient separation schemes. 1,3 butadiene is purified in two columns in series through being separated from methyl acetylene and 1,2 butadiene in the first and second column respectively. comparisons have been made among different therm...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2021

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en14020410